
Non-Rationality in non-repeated games

David H. Wolpert,1∗ Julian Jamison2, David Newth3, Michael Harre4

1MS 269-1, NASA Ames Research Center,

Moffett Field, CA, 94035, USA
2USC Brain and Creativity Institute, 3620 McClintock Ave, Suite250,

Bldg SGM, MC 1061, Los Angeles, CA 90089, USA
3CSIRO Centre for Complex Systems Science

Gungahlin Homestead, Crace, ACT, 2611, Australia,
4The Centre for the Mind and The School of Information Technologies,

Sydney University, Australia

∗To whom correspondence should be addressed; E-mail: dhw@santafe.edu

A long-standing puzzle in economics and biology is why humans and animals

sometimes act non-rationally by seeming not to adopt their optimal strategy

when interacting with others (1–3). A particular example of this puzzle is why

humans and animals sometimes are altruistic to non-kin and so cooperate with

them. Many previous explanations show how non-rationality by a player in an

individual game can be optimal for that player if consideredin the context of

an infinite sequence of identical, repeated instances of that game (1,4–6,6–17).

Here we introduce a framework that explains non-rationality even in single,

non-repeated games. Our framework starts from the observation that an in-

dividual i often adopts a “persona” that they signal to others before interact-

ing with them. We formalize such a temporarily adopted persona as a utility

function, one that may differ from i’s true utility function. By changing what
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persona they adopt, kithe may change the behavior of others in the interaction.

In particular, we show that sometimes by adopting a “non-rational” persona,

an individual i induces behavior by others that increases the value ofi’s true

utility function. In such cases, it is optimal for i to be “non-rational”. This

framework can explain many different instances of non-rationality. To illus-

trate this breadth, we first derive several quantitative predictions concerning

non-rationality in non-repeated play of the Traveler’s Dilemma (TD), all of

which agree with experiment. We then show how cooperation can arise even

in a non-repeated play of certain versions of the Prisoner’sDilemma (PD). In

addition to explaining cooperation in the PD, our framework reveals an as-

pect of the PD never previously realized: an unavoidable tradeoff between the

robustness of cooperation in the PD and the benefit of the cooperation. On

a broader scale, our framework provides a way to formalize the role of non-

rationality in “culture gaps”. Finally, adopting an engine ering perspective,

our framework has implications for how to design mechanismsthat regulate

groups of interacting individuals, including applications at NASA.

1 Background

A lot of research has been done on explaining non-rational behavior in a gameγ by embedding

γ in an open-ended sequence of repetitions ofγ. The earliest such explanations concerned

games where opponents were genetically related (18, 19) or where they never varied across

the sequence (4, 20, 21). This work was subsequently expanded into a broader body ofwork

considering the evolution of the strategies of the players of γ across repetitions ofγ, with no

restriction that opponents be related or fixed throughout the sequence (1, 4–6, 6–14). In this

broader work, which we call Evolution Of Strategies (EOS), the strategy of every player in any
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particular instancet of γ is fixed. Those fixed strategies jointly determine the payoffs for all

the players in the game played att. As successive versions ofγ are played, the probability

distribution of the strategies of the players get updated, to reflect each player’s payoffs in the

preceding instances ofγ. Often a strategy that is non-rational for any single instance ofγ (i.e.,

not payoff-maximizing) is actually rational when considered as part of the full sequence of

games.

EOS has uncovered and helped analyze many important phenomena related to non-rational

behavior, including punishment, “loners”, and reputationeffects. However EOS has several

limitations. The primary one is that EOS is based on having all the individuals in a population

repeatedly play the exactly identical game, in a sequence that potentially extends infinitely into

the future. In the real world, many games are not infinitely repeated, or at least not in the exact

same form. Another limitation is that no formalization of EOS applies to non-rationality in

general, but rather each one is tailored to only one type of non-rationality, like altruism. A

third limitation is that EOS often requires the players to have some ability to recognize their

opponents from one game instance to the next, or to have non-zero probability of encountering

the same opponent in multiple game instances. Unfortunately, even given such limitations, the

analysis with EOS is often so complicated that computer simulations are needed. (See (22) for

discussion of other limitations of EOS.)

There are alternative explanations of apparent non-rationality that apply to non-repeated

games, unlike EOS. One of them starts with the observation that real-world social organisms

often have different “personas” that they adopt for their interactions with one another. For

example, someone might “act dumber than they are” in an interaction. Similarly, often we

“act like a different person” when we interact with our boss, our spouse, or achild. In each

such instance we act as though we have a different set of preferences and values from our

real ones. This phenomenon has even entered common discourse, as illustrated in a recent
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newspaper article that said “the workplace is full of chameleons who adopt a different persona

each day” (28). In some instances we may choose preferences, signal them to one another,

and commit ourselves to them all in an unconscious manner, as“moods” or “emotions” that

we signal to one another via tone of voice, body language, andthe like. (See the discussion

in (23), and of costly signaling in general in (25–27).) In fact, there is reason to believe that

unconscious signaling of moods is most pronounced when the signaler is aware that others are

watching (24), precisely the context in which game theory considerations come into play.

Adopting a persona that disagrees with one’s true utility would seem to be non-rational.

To illustrate how it can actually be rational, say we have twoplayers, Row and Col, each of

whom can choose one of two moves (“pure strategies”). We write the sets of pure strategies as

(Top, Down) ({T,D}) for Row, and (Left, Right) ({L ,R}) for Col. Both players have a “utility

function”, which maps any joint move by both players into a real number. As an example, say

the utility function pairs (uR,uC) for the four possible joint moves can be written as the matrix

[

(6,0) (4,4)
(5,5) (0,6)

]

(1)

This matrix says, for instance, that if Row playsT while Col playsL , then Row’s utility is 6

and Col’s utility is 0. (This game is a particular instance of the broad class of games known as

the Prisoner’s Dilemma (PD).)

To play an instance of the game each playeri ∈ {Row, Col} independently chooses a “mixed

strategy”, i.e., a probability distributionPi(xi) over their set of allowed moves. So the expected

utility for player i is EP(ui) =
∑

xi ,x−i
Pi(xi)P−i(x−i)u(xi , x−i), whereP−i(x−i) is the mixed strategy

of i’s opponent. A pair of mixed strategies (PRow,PCol) is called a Nash Equilibrium (NE) of

the game if for all playersi, EP(ui) cannot increase ifPi changes whileP−i stays the same.

Intuitively, at a NE, neither player could benefit by changing their mixed strategy, in light of

their opponent’s mixed strategy. If either player violatesthis condition, they are said not to be

4



“rational”.

For example, in the PD of Table 1, there is a unique NE, where RowplaysT with probability

1.0 and Col playsR with probability 1.0. (Given the mixed strategy of Row, Col’s expected

utility would decrease if they playedL with non-zero probability, and given the mixed strategy

of Col, Row’s expected utility would decrease if they playedD with non-zero probability.) Note

though that at the (non-NE) joint move (D,L ), both players have higher expected utility than at

the NE. So if they could both be induced to cooperate with one another and choose that move

—and in doing so both not be rational— both of the players would benefit.

Now say that rather than being rational in the PD, Col were perfectly irrational . That is,

they commit to choosing uniformly randomly between their two moves, with no evident concern

for the resultant value of their utility function, and therefore no concern for what strategy Row

adopts. Given such irrationality of Col, Row would have expected utility of 5 for playingT,

and of (5.0+ 0.0)/2 = 2.5 for playingD. So if Row were rational, given that Col is irrational,

Row would still playT with probability 1.0. Given that Col plays both columns with equal

probability, this in turn would mean thatE(uC) = 2. Since if Col were rational Col’s expected

utility would be 4, being irrational rather than rational would hurt Col in this PD.

Now however modify the PD to have the following utility functions (uR, uC):

[

(0,0) (6,1)
(5,5) (4,6)

]

(2)

Again the joint move (T,R) is the only NE. At that NE,E(uC) = 1.0. Now though if Col were

irrational, Row would have expected utility of 3 for playingT, and of 4.5 for playingD. So if

Row were rational, given that Col is irrational, Row would playD with probability 1.0. Given

that Col plays both columns with equal probability, this in turn would mean thatE(uC) = 5.5.

So by being irrational rather than rational, Col has improvedtheir expected utility from

1.0 to 5.5. Such irrationality by Col allows Row to play a move that Row otherwise wouldn’t
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be able to play, and that ends up helping Col. This is true even though Col would increase

expected utility by acting rationally rather than irrationally if Row’s mixed strategywere fixed

(at D). The important point is that if Col were to act rationally rather than irrationally while

Row’s rationality were fixed (at full rationality), then Col would decrease expected utility. This

phenomenon can be seen as a model of the common real-world scenario in which someone

“acts dumber than they are” (by not being fully rational), and benefits by doing so.

Stated in this informal way, the persona-based explanationof non-rationality predates EOS,

going back at least to the 1950’s (29–31), and arguably back to antiquity (31). In particular, it

played a prominent role in formulation of cold war policies like mutual assured discussion.

2 Evolution of Preferences and Persona Games

We now present our first contribution, a framework that formalizes the persona phenomenon.

This framework does not share the limitations of EOS. In particular, it can applied to non-

repeated games. Moreover, as illustrated below, it both explains experimental data concerning

non-rational behavior and uncovers novel aspects of such behavior.

To introduce our framwork, first note that the EOS equilibrium concept, involving repeti-

tions of a gameγ, can be modified to produce the NE concept that concerns a non-repeated

instance ofγ. In both the EOS equilibrium and the NE, each playeri is assigned a utility func-

tion ui over the spaceX. However the NE concept replaces the infinite game sequence of EOS

with a single game and two assumptions. The first is the complete information assumption,

common in economics (21). That assumption implies that each player knowsX in full, and also

knows the utility functions of all the players. The second assumption is that the players have

common knowledge and each playeri is rational. This meansi uses their complete information

strategically, to choose the distributionP(xi) that maximizes their expected utility, given what

they think the other players will do. The result of these two assumptions is that the players
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jointly play the NE ofγ.

We want to formalize the persona framework in an analogous way, i.e., we want to intro-

duce the complete information and rationality assumptionsinto a repeated game framework, to

produce a new framework that applies to non-repeated games.Now note that in the NE players

adopt strategies, and the NE is a modification of a repeated game framework where strategies

evolve. So by our desired analogy, to build a framework whereplayers adopt personas, we

should modify a repeated game framework where personas evolve.

Evolution Of Preferences (EOP) (15–17, 32–34) is such a repeated game framework. EOP

can be viewed as a modification of EOS. Like in EOS, in EOP the gameγ specifies a space of

possible joint movesX. γ also specifies for each playeri an associated true,concreteutility

functionui defined overX. Unlike in EOS though, rather than fixing the strategy of eachplayer

i at the beginning of each instancet of γ, the preference of playeri is fixed, i.e., a counterfactual

utility function bi ∈ Bi is fixed.

In addition to this modification, EOP changes EOS by expanding each instancet of γ into

a two-step process. In the first step the players signal their(fixed) preferences to one another.

Those signaled preferences are assumed to be binding on the players, in the sense that each

player is assumed to act rationally for their signaled preference. This means that in the second

step att, each playeri chooses the strategy overXi that they think will maximize the expected

value of their signaled preferencebi, given that the other players will try to maximize their

signaled utilities,{bj : j , i}. So the distribution overX in the game att is given by a NE of the

realized gameat t specified by that set of signaled preferences att.

That NE joint strategy overX is evaluated under the concrete utility functions{ui} to get the

ultimate expected payoffs to the players for game instancet. Analogously to the evolution of

the strategies of the players in EOS, in EOP the fixed preferences the players have before each

instance of the game is updated as the sequence of games unfolds. As in EOS, this updating is
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based on each player’s payoffs in the preceding instances ofγ.

Note that in EOP, unlike in EOS, the strategy of playeri in game instancet will depend

on attributes of the other players in that game instance. Partly as a result, it is often easier to

derive results without using computer simulations in EOP than it is in EOS. Another advantage

of EOP over EOS is that it does not require any ability of the players to recognize one another

from one game to the next. (The signaling in EOP serves the same mathematical purpose as the

ability to recognize your opponents does in EOS.)

On the other hand, EOP has some limitations not found in EOS. Much of the formal work

in EOP restricts attention to a game (or set of coupled games)with a single symmetric utility

function shared by all the players. Such games are rare in thereal world. In addition, EOP typ-

ically requires that the population be infinite. However when used to evolve a finite population,

even a large one, natural selection can result in very different equilibria from when it is used to

evolve infinite populations (35, 36). Moreover, abstracting away from real-world geographical

constraints, the evolution process assumed in EOP typically requires thatall individuals in a

population interact, even when the population is infinite. Furthermore, for some EOP games,

the evolutionary dynamic process has no equilibrium; EOP cannot make predictions for such

games. Another limitation is that the results in EOP typically vary with the initial characteris-

tics of the population that the evolution works on. Finally,EOP requires an infinite sequence of

exactly identical games, which as mentioned is rare in the real world.

In the same way that the NE is a modification of EOS, we can formalize the persona phe-

nomenon as a modification of EOP. In this formalization, eachplayeri has an associated con-

crete utility functionui and a set of possible, counterfactual utility functions over X, Bi. Like in

EOP, we assume that every such concrete utility functionui and set of possible adopted func-

tions Bi is provided exogenously, perhaps through an evolutionary process. (In this paper we

restrict attention toBi ’s that seem to be found in the real world.)
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Again like in EOP, the concrete utility functions and sets ofpossible counterfactual utility

functions are used to expand the concrete game into two steps. In the first step every playeri

samples an associated distributionP(bi) to get abi that they will play for the second, realized

game, and signals thatbi to the other players. Then in the second step the players playa NE

of the realized game specified by those signaled utility functions. That NE sets the expected

values of the players’ concrete utility functions.

All of this is identical to EOP. Where we differ from EOP is exactly the same place that

the NE concept differs from EOS: we replace EOP’s repeated games with a single game, and

introduce the complete information and common knowledge/ full rationality assumptions. In

our context, the complete information assumption means that before signaling their counterfac-

tual utility, each player knows their own setBi, the sets{Bj} of the other players, and knows

the concrete utility functions of all players. Common knowledge and full rationality means that

each playeri will use their complete information strategically, in a rational manner, to choose

for their self the distributionP(bi) to be sampled to generate the signaledbi. More precisely,

it means that each playeri choosesP(bi) so as to maximize the associated expected value of

their concrete utility, as evaluated under the NE of the realized game. (See (37) for extensions

to concrete games of incomplete information.)

This modification means that in the persona framework the distributionsP(bi) themselves

are NE, of the full, two-step game. This allows us to bring allthe power of techniques for

analyzing NE to bear in predicting what theP(bi)’s are. In contrast, in both EOS and EOP the

distributionsP(bi) are equilibria of a dynamic evolutionary process, and powerful techniques

for analyzing NE usually cannot be applied. This is why it is easier to generate quantitative

results without computer simulations in the persona framework than in EOP.

The use of NE techniques also means that every game in the persona framework has an

equilibrium, so the persona framework can always make a prediction. This is not the case in
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EOP. Furthermore, being based on the NE, no initial characteristics of a population are relevant

in the persona framework, and we make no physically impossible assumptions about such a

population. (Note that the physical timescales involved inthe process that the persona frame-

work models are very different from the timescales of EOP and EOS; the interactions ofsingle

individuals versus evolving populations of individuals.)

Perhaps most important, the persona framework offers explanations for apparent non-rationality

even in non-repeated games. This corroborates the conclusion in (38) that “cooperation can

(be explained), even among non-kin, in situations devoid ofrepeat interaction”. However the

persona framework shows that this conclusion holds even without punishment and genes for

non-kin altruism (which have not been found on the human chromosome), which are assumed

in (38). Cooperation can exist for purely self-interested reasons.

We refer to thebi ’s determined for a single game via common knowledge aspersonas,

to distinguish them from the preferences that are determined in standard EOP over an infinite

sequence of games. Accordingly, we refer to eachBi as apersona set. Note that the players

in the first step can be viewed as playing a game. Their joint move is the joint persona they

adopt,b. The utility function of playeri in this game is the mapping from all possibleb’s to the

expected concrete utility of the (NE of the) realized game specified byb. We refer to this game

as a persona game. (See the supplemental information for a more detailed definition of persona

games, and a discussion of their relation with yet other frameworks, e.g., games involving the

signaling of binding contracts.)

3 The Traveler’s Dilemma

To illustrate the persona framework, we provide an explanation for some of the experimental

data concerning the famous Traveller’s Dilemma (TD) (39–44). The TD models a situation

where two travelers fly on the same airline with an identical antique in their baggage, and the
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airline accidentally destroys both antiques. The airline asks them separately how much the

antique was worth, allowing them the answers{2,3, . . . ,101}. To try to induce honesty in their

claims, the airline tells the travelers that it will compensate both of them with the lower of their

two claims, with a bonus ofR for the maker of the lower of the two claims, and a penalty ofR

for the maker of the higher of the two claims.

To formalize the TD, letΘ(z) be the Heaviside step function,Θ(z) = {0,1/2,1} for z< 0, z=

0 andz > 0, respectively. Then for both playersi, the utility function in the TD concrete game

is ui(xi , x−i) = (xi + R)Θ(x−i − xi) + (x−i − R)Θ(xi − x−i) whereR is the reward/penalty (for

making a low/high claim),xi is the monetary claim made by playeri, andx−i is the monetary

claim made by the other player.

The NE of this game is (2,2), since whateveri’s opponent claims, it will benefiti to undercut

that claim by 1. However in experiments (not to mention common sense), this NE never arises.

In experiments rich with implications for the sociology of science, it has been found that even

when game theoreticians play the TD with one another for realstakes, they tend to make claims

that are not much lower than 101, and almost never make claimsof 2. When describing these

results, Basu (39) called for a formalization of “the idea of behavior generated by rationally

rejecting rational behavior ... to solve the paradoxes thatplague game theory”.

Consider a persona game based on theR = 2 TD concrete game. Since it seems that real

humans are sometimes fully rational and sometimes irrational, choose those as the possible

personas of the players, indicated byρ = ∞ andρ = 0, respectively. When both players are

fully rational, the expected utility to both is 2, i.e.,E(ui | ρ1 = ∞, ρ2 = ∞) = 2 for both players

i. Now say that playeri is rational while the other player is irrational. The resultant expected

utility E(ui | xi , ρ−i = 0) reaches its (integer) maximum atxi ∈ {97,98}. Plugging in this value

of the full rationalityxi means thatE(ui | ρi = ∞, ρ−i = 0) ≃ 49.6 (37). Continuing in this way
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gives persona game utility functions with the following (rounded) values:

Player 2 rationality
0 +∞

Player 1 rationality
0 (34.8, 34.8) (53.3, 49.6)

+∞ (49.6, 53.3) (2, 2)

(3)

This persona game has two pure strategy NE, (ρ1, ρ2) = (0,∞) and (ρ1, ρ2) = (∞,0). The

associated distributionP(x1) for the first of these rationality NE is uniform. The associated

P(x2) instead has half its mass onx2 = 97, and half onx2 = 98. The two distributions for the

other pure strategy rationality NE are identical, just withP(x1) andP(x2) flipped. (As an aside,

note that if one of the players is irrational and the other rational, it is better to be theirrational

one of the two players rather than the rational one.)

There is also a symmetric mixed strategy NE of the persona game, at which both rationality

players chooseρ = 0 with probability .78. The associated marginal distributionsP(xi) are

identical for bothi’s: P(xi = 2) ≃ 5.8%, P(xi = 97) = P(xi = 98) ≃ 9.5%, andP(xi) ≃ 0.8%

for all other values ofxi. (Note that becauseP(ρ1, ρ2) is not a delta function,P(x1, x2) ,

P(x1)P(x2).)

At such a mixed strategy NE of the persona game the persona players randomly choose

among some of their possible personas. Formally, the possibility of such an NE is why persona

games always have equilibria, in contrast to EOP. Empirically, such a NE can be viewed as a

model of “capricious” or “moody” behavior by humans.

Uniformly averaging over the three NE of the persona game gives aP(x) that is highly

biased to large values ofx. This agrees with the experimental data recounted above.

We can do the same analysis for other values ofR besides 2. WhenR grows, the mixed

strategy equilibrium of the persona game places more weighton the persona∞. This makes

P(x) become more weighted towards low values. In fact, whenR gets larger than∼ 38.2, the
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two pure strategy NE of the persona game disappear, and the mixed strategy NE reduces to the

pure strategy where both players are fully rational. So for such values ofR, the players are fully

rational. These results agree with experimental data (40) on what happens asRchanges.

4 Persona Games and the Prisoner’s Dilemma

To illustrate the breadth of persona games, we now consider personas for a player that involve

the utilities of that player’s opponents. Such personas allow us to model “other-regarding pref-

erences”, like altruism and fairness biases. If a player benefits by adopting a persona with

such an other-regarding preference in a particular game, then that other-regarding preference is

actually optimal for purelysel f-regarding reasons.

To elaborate this, let{uj : j = 1, . . .N} be the utility functions of the originalN-player

concrete game. Have the persona set of playeri be specified by a set of distributions{ρi}, each

distributionρi being anN-dimensional vector written as (ρ1
i , ρ

2
i , . . . , ρ

N
i ). By adopting persona

ρi, playeri commits to playing the realized game with a utility function
∑

j ρ
j
i u

j rather thanui.

So pure selfishness for playeri is the personaρ j
i = δi, j, which equals 1 ifi = j, 0 otherwise.

“Altruism” then is aρ j
i that places probability mass on more than onej. (“Fairness” is a slightly

more elaborate persona than these linear combinations of utilities, e.g., the commitment to play

the realized game with a utility function [(N − 1)ui −
∑

j,i uj]2.)

As an example, consider the two-player two-move concrete game with the following utility

functions:

[

(2,0) (1,1)
(3,2) (0,3)

]

(4)

There is one joint pure strategy NE of this game, at (T,R). Say that both playersi in the

associated persona game only have 2 possible pure strategies,ρ j
i , δi, j andρ j

i , 1− δi, j, which

we refer to as selfish (E ) and saint (A ), respectively. Under theE persona, a player acts purely
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in their own interests, while under theA persona, they act purely in theiropponent’s interests.

As an example, if Row choosesE while Col choosesA , then the realized game equilibrium

for the concrete game in Table 4 is (D,L ), since Rows’ payoff there is maximal. Note that this

joint move gives both players a higher utility (3 and 2, respectively) than at (T,R), the realized

game equilibrium when they both adopt the selfish persona. Continuing this way, we get the

following pair of utility functions for the possible joint persona choices:

Col ρ
E A

Row ρ
E (1, 1) (3, 2)

A (0, 3) (3, 2)

(5)

The pure strategy NE of this persona game is (E ,A ), i.e., the optimal persona for Row to adopt

is to be selfish, and for Col is to be a saint. Note that both players benefit by having Col be a

saint. One implication is that Row would be willing to pay up to2.0 to induce Col to be a saint.

Perhaps more surprisingly, Col would be willing to pay up to 1.0 to be a saint, i.e., to be allowed

to completely ignore their own utility function, and work purely in Row’s interests.

In the case of the PD concrete game, other-regarding personas can lead the players in the

realized game to cooperate. For example, say that each player i can choose either the selfish

persona, or a “charitable” persona, under whichρi is uniform (so that playeri has equal concern

for their own utility and for their opponent’s utility). Then for the PD concrete game in Table 1,

the equilibrium of the persona game is for both players to be charitable, a choice that leads

them to cooperate in the realized game (see supplemental information). Note that they do this

for purely self-centered reasons, in a game they play only once. This result might account

for some of the experimental data showing a substantial probability for real-world humans to

cooperate in such single-play games (45).

To investigate the breadth of this PD result, consider the fully general, symmetric PD con-
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crete game, with utility functions

[

(β, β) (0, α)
(α,0) (γ, γ)

]

(6)

where (R,D) is (defect, defect), soα > β > γ > 0. Also consider the fully general charitable

persona,C , whereρi = s for both playersi. SoE is s= 1, andA is s= 0. We are interested in

what happens if the persona sets of both players is augmentedbeyond the triple{fully rational

personaE , the irrational persona, the anti-rational persona} that was investigated above to also

include theC persona, for some fixed value ofs. (See (46) for analysis of the case where the

two players have different values ofs.)

Working through the algebra (see the supplemental information), we first see that neither

the non-rational nor the antirational persona will ever be chosen. We also see that for joint

cooperation in the realized game (i.e., (L ,T)) to be a NE under the (C ,C ) joint persona choice,

we needR1 ≡ β − sα > 0 (see the supplemental information). If insteadR1 < 0, then under the

(C ,C ) joint persona either playeri would prefer to defect given that−i cooperates. Note that

R1 can be viewed as the robustness of having joint cooperation be the NE when both players

are charitable. The largerR1 is, the larger the noise in utility values, confusion of the players

about utility values, or some similar fluctuation would haveto be to induce a pair of charitable

players not to cooperate.

Given thatR1 > 0, we then needR2 ≡ γ − (1− s)α > 0, to ensure that each player prefers

the charitable persona to the selfish persona whenever the other player is charitable.R2 can also

be viewed as a form of robustness, this time of the players both wanting to adopt the charitable

persona in the first place.

Combining, we see that (C ,C ) followed by (L ,T) is an equilibrium whenevers ∈ (1− γ
α
,
β

α
].

For that range on alloweds’s to be non-empty requires thatγ > α − β. Intuitively, this means

that playeri’s defecting in the concrete game provides a larger benefit toi if player −i also
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defects than it does if−i cooperates. It is interesting to compare these bounds onα, β andγ to

analogous bounds, discussed in (10), that determine when direct reciprocity, group selection,

etc., can result in joint cooperation being an equilibrium of the infinitely repeated PD.

At the NE of the concrete game in Table 6, both players defect,and each player’s utility is

γ. So when we do have (C ,C ) followed by (L ,T), the benefit to each player of playing the

persona game rather than playing the concrete game directlyis B ≡ β − γ. Comparing this to

the formulas forR1 andR2, we see thatR1 +R2 + B ≤ 1. This proves that there are unavoidable

tradeoffs between the robustness of cooperation and the potential benefit of cooperation in the

PD, whenever (as here) the concrete game matrix is symmetricand both players can either be

selfish or charitable for the same value ofs.

To understand this intuitively, note that havingR2 large means that bothγ ands are (rela-

tively) large. These conditions guarantee something concerning your opponent: they are not so

inclined to cooperate that it benefits you to take advantage of them and be selfish. On the other

hand, havingR1 large guarantees something concerning you: the benefit to you of defecting

when your opponent cooperates is small.

It is interesting to note the implications of this for the “prisoner’s dilemma” of a marriage.

Having R2 large means that your spouse must pay significant attention to their own interests

as well as yours. It also means that your spouse must benefit substantially by punishing you

if you defect. HavingR1 large means that you can’t benefit too much by defecting when your

spouse cooperates. If bothR1 andR2 are large, then fluctuations in behavior or perceptions are

unlikely to break the joint-cooperation outcome. Our result shows that there is an unavoidable

tradeoff between having those values be large and also having there bea large benefit to joint

cooperation in the marriage.
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5 Discussion

The persona framework goes beyond explaining some types of currently known non-rational

behavior, to reveal previously unknown situations in whichnon-rationality is in a player’s best

interests. An extreme example is where a player benefits by adopting the persona of being

her “own worst enemy” (i.e., by committing to always act tominimizeutility). There are even

simple concrete games whereall players benefit from adopting thisanti-rational persona, no

matter what persona their opponents adopt. The NE of the associated persona game is for all

players to choose to be anti-rational. Furthermore, for some such games,everypersona player

i receives higher utility under that all-anti-rational NE ofthe persona game than they would

if all players instead adopted the persona of full rationality. In such games, every individual

would prefer it if everyone (herself included) is their own worst enemy. Translated to the real

world, this means that sometimes a governmental regulator should try to induce each player to

act precisely against their own interests, since by doing that the player benefits both them and

everyone else. An example of such a game is provided in the supplemental information.

As an illustration of a potential practical application of the persona phenomenon, note that

many modern engineered systems can be viewed as a distributed set of adaptive, goal-directed

subsystems. Often the equilibrium behavior of such a systemcan be modeled as the NE of a

game where the players are those subsystems. Typically in such cases the system designer can

set some aspects of the utility functions of the “players” (i.e., some aspects of the goals of the

subsystems) and/or of how rational the players are. Examples involving purely artificial players

include distributed adaptive control, distributed reinforcement learning (e.g., such systems in-

volving multiple autonomous adaptive rovers on Mars or multiple adaptive telecommunications

routers), and more generally multi-agent systems involving adaptive agents (47, 48). In other

instances of such engineered systems some of the players arehuman beings. Examples here
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include air-traffic management (49), multi-disciplinary optimization (50, 51), and in a certain

sense, much of mechanism design, e.g., design of auctions (4,52).

The implications of the analysis concerning Table 2 predicts that the performance of some of

these engineered systems could be improved if the players were impeded from playing rationally

(e.g., by corrupting their sensor input). Moreover, the analysis of the game in the supplemental

information predicts that some players — perhaps all of them— would sometimes improve their

performance if they were induced to always be anti-rational(e.g., by appropriate transformation

of their reward signals from their environment).

There are many interesting connections between persona games and real world phenomena.

For example, a necessary condition for a real-world player to adopt a persona other than perfect

rationality is that they believe that the other players are aware that they can do that. The simple

computer programs for maximizing utility that are currently used in game theory experiments

do not have such awareness. Accordingly, if a human knows they are playing against such a

program, they should always play perfectly rationally, in contrast to their behavior when play-

ing against humans. This distinction between behavior whenplaying computers and playing

humans agrees with much experimental data, e.g., concerning the Ultimatum Game (1,2,53).

What happens if the players in a persona game are unfamiliar with the meaning of each

others’ signals, say due to coming from different cultures? This might lead them to misconstrue

the personas (or more generally persona sets) adopted by oneanother. Intuitively, one would

expect that the players would feel frustrated when that happens, since in the realized game they

each do what would be optimal if their opponents were using that misconstrued persona — but

their opponents aren’t doing that. This frustration can be viewed as a rough model of what is

colloquially called a “culture gap” (54).

Broadening the discussion beyond humans, note that calculating a persona equilibrium typ-

ically involves far more computational work than calculating the equilibria of the associated
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concrete game. (Crudely speaking, for every possible joint persona, one has to calculate the

associated realized game equilibria, and onlythencan one calculate the persona game equi-

libria.) Hence, one would expect persona games only in members of a species with advanced

cognitive capabilities, who have a lot of interactions withother organisms that can also play

persona games. Colloquially speaking, we might characterize a member of such a species who

plays persona games well as having “high social intelligence”.

Also for computational reasons, one would expect the persona set of any social animal for

any concrete game not to be too large. This is because a large set both increases the computa-

tional burden on the player with that set, and on the other players they play against.

Indeed, computational issues might prevent a social animalfrom calculating the optimal

persona from some associated persona set, even a limited persona set, for every concrete game

they encounter. (Just think about how many games you play during a typical day, and imagine

calculating the precisely optimal persona for every such game.) Rather they might use a simple

rule to map any pair{a concrete game, a specification of which player they are in that game} to

a persona for that game. As an example, a value for the altruism N-vectorρ can be used to map

everyN-player concrete game a person might play to a persona for them to adopt for that game.

We call such a map a “personality” (see the supplemental information).

Summarizing, persona games provide a very simple justification for irrationality with very

broad potential applicability. They also make quantitative predictions that can often be com-

pared with experimental data. (In work currently being written for submission, two of us has

found that the predictions of the persona game framework also agree with experimental data for

the Ultimatum Game (37).) While here we have only considered personas involving degrees of

rationality and degrees of altruism, there is no reason not to expect other kinds of persona sets

in the real world. Risk aversion, uncertainty aversion, reflection points, framing effects, and all

the other “irrational” aspects of human behavior can often be formulated as personas.
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Even so, persona games should not be viewed as a candidate explanation of all non-rational

behavior. Rather they are complementary to other explanations, for example those involving

sequences of games (like EOS and EOP). Indeed, many phenomena probably involve sequences

of persona games (or more generally, personality games). Asan illustration, say an individual

i repeatedly plays a face-to-face persona gameγ involving signaling, persona sets, etc., and

adopts persona distributionP(bi) for those games. By playing all those gamesi would grow

accustomed to adoptingP(bi). Accordingly, if i plays new instances ofγ where signaling is

prevented, they might at first continue to adopt distribution P(bi). However as they keep playing

signal-free versions ofγ, they might realize thatP(bi) no makes sense. This would lead them to

adopt the fully rational persona instead. If after doing that they were to play a version ofγwhere

signaling was no longer prevented, they could be expected toreturn toP(bi) fairly quickly. This

behavior agrees with experimental data (55,56).
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